skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luo, Xuyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mechanoresponsive polymeric materials that respond to mechanical deformation are highly valued for their potential in sensors, degradation studies, and optoelectronics. However, direct visualization and detection of these responses remain significant obstacles. In this study, novel mechanoresponsive polybiidenedionediyl (PBIT) derivative topochemical polymers are developed that depolymerize under mechanical forces, exhibiting a distinct and irreversible color change in response to grinding, milling, and compression. This color change is attributed to the alteration of polymer backbone conjugation during elongated Carbon‐Carbon (C─C) single bond cleavage. Quantum chemical pulling simulations on PBIT polymers reveals a force range of 4.3–5.0 nN associated with the selective cleavage of elongated C─C single bonds. This force range is comparable to that observed for typical homolytic mechanophores, supporting the mechanistic interpretation of homolytic bond scission under mechanical stress. C─C bond cleavage kinetic studies of PBIT under compression indicates that strong interchain interactions significantly increase the pressure needed to cleave the elongated C─C bonds. Additionally, PBIT polymer thin films are composited with polydimethylsiloxane to create free‐standing and robust thin films, which can serve as ink‐free and rewritable paper for writing and stress visualization applications. This advancement opens new possibilities for utilizing crystalline and brittle topochemical polymers in practical applications. 
    more » « less
    Free, publicly-accessible full text available September 18, 2026
  2. null (Ed.)
  3. We report a reversible photo-induced doping effect in two-dimensional (2D) tungsten diselenide (WSe 2 ) field effect transistors on hexagonal boron nitride (h-BN) substrates under low-intensity visible light illumination (∼10 nW μm −2 ). Our experimental results have shown that this reversible doping process is mainly attributed to two types of defects in h-BN substrates. Moreover, the photo-doped WSe 2 transistors can be stable for more than one week in a dark environment and maintain the high on/off ratio (10 8 ) and carrier mobility, since there are no additional impurities involved during the photo-induced doping process to increase the columbic scattering in the conducting channel. These fundamental studies not only provide an accessible strategy to control the charge doping level and then to achieve a writing/erasing process in 2D transistors, but also shed light on the defect states and interfaces in 2D materials. 
    more » « less
  4. null (Ed.)
  5. Intrachain charge transport is unique to conjugated polymers distinct from inorganic and small molecular semiconductors and is key to achieving high-performance organic electronics. Polymer backbone planarity and thin film morphology sensitively modulate intrachain charge transport. However, simple, generic nonsynthetic approaches for tuning backbone planarity and the ensuing multiscale assembly process do not exist. We first demonstrate that printing flow is capable of planarizing the originally twisted polymer backbone to substantially increase the conjugation length. This conformation change leads to a marked morphological transition from chiral, twinned domains to achiral, highly aligned morphology, hence a fourfold increase in charge carrier mobilities. We found a surprising mechanism that flow extinguishes a lyotropic twist-bend mesophase upon backbone planarization, leading to the observed morphology and electronic structure transitions. 
    more » « less
  6. Chemical doping is widely used to manipulate the electrical and thermoelectric properties of organic semiconductors, yet intelligent design of polymer–dopant systems remains elusive. It is challenging to predict the electrical and thermoelectric properties of doped organic semiconductors due to the large number of variables impacting these properties, including film morphology, dopant and polymer energetics, dopant size, and degree of polaron delocalization. Herein, a series of dopants with varying sizes and electron affinities (EAs) are combined with polymers of differing ionization energies (IEs) to investigate how the difference between polymer IE and dopant EA influences the doping efficiency and electrical conductivity, and how the dopant size influences the thermoelectric properties. Our experiments demonstrate that at low doping levels the doping efficiency strongly depends on the difference between the polymer IE and dopant EA; the effectiveness of doping on increasing electrical conductivity drastically decreases at high loadings for the molybdenum dithiolene complexes, while FeCl 3 remains effective at high loadings; and the large molybdenum complexes lead to more delocalized polarons as compared to FeCl 3 . To take advantage of the complementary doping characteristics of the molybdenum complexes and FeCl 3 , both dopants are employed simultaneously to reach high power factors at relatively low dopant concentrations. 
    more » « less